NMR spectroscopy

Image

NMR spectroscopy

Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. Similarly, biochemists use NMR to identify proteins and other complex molecules. Besides identification, NMR spectroscopy provides detailed information about the structure, dynamics, reaction state, and chemical environment of molecules. The most common types of NMR are proton and carbon-13 NMR spectroscopy, but it is applicable to any kind of sample that contains nuclei possessing spin.

NMR spectra are unique, well-resolved, analytically tractable and often highly predictable for small molecules. Different functional groups are obviously distinguishable, and identical functional groups with differing neighboring substituents still give distinguishable signals. NMR has largely replaced traditional wet chemistry tests such as color reagents or typical chromatography for identification. A disadvantage is that a relatively large amount, 2–50 mg, of a purified substance is required, although it may be recovered through a workup. Preferably, the sample should be dissolved in a solvent, because NMR analysis of solids requires a dedicated magic angle spinning machine and may not give equally well-resolved spectra. The timescale of NMR is relatively long, and thus it is not suitable for observing fast phenomena, producing only an averaged spectrum. Although large amounts of impurities do show on an NMR spectrum, better methods exist for detecting impurities, as NMR is inherently not very sensitive - though at higher frequencies, sensitivity is higher.

Chemical Informatics is Insight medical publisher journal and also one of the most emerging fields in the present scenario. It is a multidisciplinary field which covers the research containing molecular design tools for finding the best fitting compounds which address to particular targets.

Chemical Informatics is a vast field that aims to disseminate information regarding the design, structures, creation, dissemination, visualization and the use of chemical information. Chemical Informatics Journal aims to supply scientists of resources in order to provide the scientific knowledge through the publication of peer-reviewed, high quality, scientific papers and other material on all topics related to Chemical information, Software and databases.

Submission

Article submissions should be done using the online Editor Tracking System or through E-mail IDs provided at the respective journal’s site.

Submit manuscript to http://www.imedpub.com/submissions/chemical-informatics.html or as an E-mail attachment to our editorial office at chemicalinformatics@chemistryjournals.org

 

Contact

Elsa
Journal Manager

Whatsup: +44-20-3608-4181
Chemical Informatics-Open Acces